Neurobiology Underlying Fibromyalgia Symptoms

Review Article

Neurobiology Underlying Fibromyalgia Symptoms

1Alan Edwards Centre for Research on Pain, McGill University, 3640 University Street, Room M19, Montreal, QC, H2A 1C1, Canada
2Department of Neurology & Neurosurgery, McGill University, 3640 University Street, Room M19, Montreal, QC, H2A 1C1, Canada
3Department of Anesthesia, McGill University, 3640 University Street, Room M19, Montreal, QC, H2A 1C1, Canada
4Center for Neurosensory Disorders, University of North Carolina, CB No. 7280, 3330 Thurston Building, Chapel Hill, NC 27599, USA

Received 27 April 2011; Accepted 23 August 2011

Academic Editor: Muhammad B. Yunus

Copyright © 2012 Marta Ceko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Fibromyalgia is characterized by chronic widespread pain, clinical symptoms that include cognitive and sleep disturbances, and other abnormalities such as increased sensitivity to painful stimuli, increased sensitivity to multiple sensory modalities, and altered pain modulatory mechanisms. Here we relate experimental findings of fibromyalgia symptoms to anatomical and functional brain changes. Neuroimaging studies show augmented sensory processing in pain-related areas, which, together with gray matter decreases and neurochemical abnormalities in areas related to pain modulation, supports the psychophysical evidence of altered pain perception and inhibition. Gray matter decreases in areas related to emotional decision making and working memory suggest that cognitive disturbances could be related to brain alterations. Altered levels of neurotransmitters involved in sleep regulation link disordered sleep to neurochemical abnormalities. Thus, current evidence supports the view that at least some fibromyalgia symptoms are associated with brain dysfunctions or alterations, giving the long-held “it is all in your head” view of the disorder a new meaning.

1. Introduction

In order to examine the neurobiology underlying the symptoms of fibromyalgia, we must first determine what those symptoms are. Until recently, fibromyalgia (FM) was diagnosed based on the ARC1990 criteria [1], which were widespread pain in combination with tenderness at 11 or more of 18 specific tender point sites. The provisional ACR 2010 FM diagnostic criteria [2], suggested as an alternative method of diagnosing FM, do not require the presence of tenderness, but rather include a list of several other symptoms, including fatigue, unrefreshing sleep, and cognitive symptoms, as well as a mix of some other symptoms that could include headache, depression, and lower abdominal pain/cramping. The hallmark symptom is still widespread pain, and a diagnosis of fibromyalgia requires this symptom. However, a patient must also have some of the other symptoms that are common among FM patients in order to reach a composite score that would lead to a diagnosis of FM. In addition to clinical symptoms that make up the diagnosis of FM, experimental studies have identified a number of other abnormalities in FM patients, including increased sensitivity to multiple types of painful stimuli, increased sensitivity to other sensory modalities, and alterations in pain modulatory mechanisms. Further, neuroimaging studies have found functional, anatomical, and neurochemical differences in the brains of FM patients compared to healthy control subjects. Most of the clinical symptoms associated with FM have not been systematically studied in the experimental setting, but there are a number of studies that have provided an objective evaluation of the altered cognitive functioning and sleep disturbances reported in FM patients. Thus, this paper will focus on the experimental evidence related to FM symptoms and connect these perceptual and cognitive signs to abnormalities observed in the brains of FM patients.

1.1. Altered Pain Perception in FM Patients

The hallmark symptom of FM is widespread ongoing musculoskeletal pain. In addition, FM patients have been distinguished from other patients with widespread pain syndromes primarily by the presence of tenderness that has been assessed clinically by finding pain evoked by 4 kg manual pressure in at least 11 of 18 defined tender points. This tender point concept was not based on an understanding of the underlying pathophysiology, but rather on empirical observation. Thus, although the ARC-90 diagnostic criteria provided an important uniform tool for defining the FM syndrome, they did not validate the tender point concept, due to the circular evidence on which the criteria were based [3]. In fact, much evidence indicates that tender points are just sites normally more sensitive to pressure pain in all individuals [47] and that FM patients have an increased pressure sensitivity at non-tender-point sites as well [8]. Accumulating evidence now shows that FM patients have increased sensitivity to many types of painful stimulation, including pressure at non-tender-point sites [9], heat and cold pain [6,1014], electrical stimulation [6], and intramuscular hypertonic saline injection [15]. Despite the plethora of evidence for hypersensitivity to painful stimuli, there is less evidence that FM patients are more sensitive to innocuous somatosensory stimuli. Detection thresholds for tactile and electrical stimuli are not altered in FM [61213], but Hollins et al. [16] found that FM patients rated innocuous pressure as more intense than did healthy controls, although the effects in the innocuous range were weaker than in the noxious range. The evidence for changes in cool or warm detection also is mixed, with most investigators finding no differences between FM and controls for heat [610] or cold [1012], whereas one study found FM patients to have reduced heat detection thresholds [12], and one study found patients to have reduced cold detection thresholds [6]. Thus, it appears that the altered sensitivity within the somatosensory system is more profound in the noxious range than in the innocuous range.

1.2. Evidence for Generalized Hypersensitivity to Unpleasant Stimuli

The hypersensitivity of FM patients to painful stimuli has led some investigators to propose that fibromyalgia involves a hypervigilance to pain and pain-associated information [1719]. However, there is now evidence that the hypersensitivity to unpleasant stimuli extends beyond the somatosensory system, which has led to the hypothesis that there is a generalized hypervigilance for sensory stimuli in FM [162021]. A few studies have examined the sensitivity of FM patients in modalities other than pain and found perceptual amplification. FM patients have been shown to have decreased tolerance of unpleasant noise [20] and increased sensitivity to loud unpleasant auditory stimuli that parallels their increased pressure pain sensitivity [22]. Similarly, FM patients perceive unpleasant olfactory stimuli to be more intense and more unpleasant than do matched control subjects [23]. On the other hand, when pleasant odors were tested, FM patients and controls perceived the odors as equally intense, consistent with another evidence that the hypersensitivity across perceptual modalities may be confined to stimuli in the unpleasant range [24]. Nevertheless, for pleasant odors, although FM patients did not rate them as more intense, they did evaluate the pleasant odors as less pleasant than did control subjects. Further, a range of auditory stimuli were rated as more intense by FM patients than by controls, and auditory stimuli rated as mildly pleasant by healthy subjects were rated as somewhat unpleasant by FM patients [16]. The finding of hypersensitivity in multiple modalities of stimulation, particularly for unpleasant stimuli, suggests that the evoked pain sensitivity of FM may be related to an altered hedonic appreciation for sensory stimuli, rather than to peripheral tissue abnormalities.

1.3. Other Phenomena Related to Altered Pain Perception

Other types of evidence from experimental pain studies in FM patients support the idea of a centrally mediated up-regulation of nociceptive activity in the CNS. A central pathophysiological process that appears to be disturbed in FM patients is the “windup” of central nociceptive processing of C-fibre input to the spinal cord, resulting in the perceptual phenomenon of temporal summation of pain. Windup of nociceptive activity is dependent on activation of the NMDA receptor complex in the spinal cord by input from C-nociceptors [2526]. Some FM patients show increased temporal summation of pain and increased aftersensations at the termination of noxious stimulation [27]. These enhanced responses could be related to one or more of several possible factors: (1) an ongoing peripheral source of input from C nociceptors other than the applied stimulus; (2) sensitized NMDA receptors on central nociceptive neurons; (3) abnormalities in descending modulation; (4) abnormal processing at supraspinal levels. Evidence of increased sensitivity in multiple sensory modalities suggests that ongoing C-nociceptor input cannot alone account for FM symptoms, indicating that there probably also are either sensitized NMDA receptors, abnormalities in modulatory systems in the brain, or abnormal sensory processing at spinal or supraspinal levels. Increased sensitivity has been demonstrated at the spinal level in FM [11]. Staud et al. [28] showed that an NMDA inhibitor reduced temporal summation in both healthy people and FM patients, suggesting that NMDA receptors probably are not sensitized in FM. On the other hand, experimental evidence shows that there are abnormalities in pain modulatory systems in FM patients that could account for altered temporal summation and other putative spinal effects.

1.4. Altered Pain Inhibition in FM Patients

For hundreds of years, clinicians have known that pain inhibits pain, a phenomenon termed “counterirritation.” More recently, a physiological basis of this phenomenon has been identified; the application of noxious stimulation activates an endogenous analgesic system involving supraspinal descending control of dorsal horn nociceptive activity. This system is termed “diffuse noxious inhibitory control” or DNIC and its physiological basis in the spinal cord has been studied extensively in anesthetized animals [2930]. Nevertheless, when competing noxious stimuli are presented in conscious humans, other systems that modulate pain, such as distraction, also are probably in effect, so that care must be taken in inferring that perceptual effects are due to DNIC. Accordingly, a group of interested researchers has suggested that the term “conditioned pain modulation” be used in humans studies to avoid the mechanistic implication [31]. Studies that have examined conditioned pain modulation in FM patients show that conditioning stimuli that produce an analgesic response to experimental pain stimuli in healthy control subjects fail to have an effect on FM patients [133234]. One of these studies controlled for the effects of distraction and habituation and found a similar lack of conditioned pain modulation in FM patients [33], suggesting the possibility that the DNIC system is in fact impaired in these individuals. Alternatively, DNIC and other descending inhibitory systems could be activated by the widespread pain of FM, and the failure to demonstrate DNIC in FM could represent a ceiling effect in which these activated systems cannot be further engaged by the experimental manipulations [8]. In addition, distraction can have a powerful pain-inhibiting effect [3539], and some researchers have suggested that FM patients have altered attentional focusing, with a hypervigilance to unpleasant stimuli (see discussion above).

2. Other Symptoms of FM

2.1. Altered Cognitive Function in FM Patients

In addition to pain, many patients with fibromyalgia complain of problems with memory and concentration, often referred to as “fibrofog” [4043]. This clinical symptom has received a large amount of experimental study, and studies using objective cognitive tests substantiate patients’ subjective reports of cognitive dysfunctions, most commonly related to speed of information processing, attention, and memory [4356]. The most robust deficits in tests of memory and attention have so far been observed in paradigms involving a prominent distraction from a competing source of information, wherein FM patients are less capable than healthy controls to retain new information when rehearsal is prevented by a distraction [495057]. Milder deficits have been observed in memory free of distraction at encoding [43444849515859]. FM patients frequently display greater impairments in the ability to actively retrieve past episodic events in the absence of a cue (free recall) than on recognition tests, which serve to evaluate the retrieval of remembered information and are more resistant to the effects of impaired attention and concentration [43444851]. It has thus been proposed that memory impairments in FM are more highly related to attentional factors that modulate the efficiency of memory functioning than to primary memory processes per se [486061]. Thus, the inability to manage distraction seems to be a particular problem in fibromyalgia patients and is reflected in patients’ reports of difficulty concentrating and dealing with complex, rapidly changing environments [61] and by memory tests showing performance decrements in the presence of distraction. Impaired cognitive performance is evident even after controlling for anxiety and depression and the influence of medications that might affect cognitive functioning [43505258]. Another area of cognitive functioning that has been shown to be abnormal in FM is that of emotional decision making [6263]. A similar deficit has been shown in chronic back pain patients, suggesting that this is not unique to FM [64].

2.2. Sleep Disturbances in FM Patients

Many FM patients complain of unrefreshed sleep. Several laboratory studies using objective measures of sleep physiology such as EEG substantiate these reports by showing disordered sleep architecture in FM patients, including delayed onset to sleep, altered sleep stage dynamics, and reduced slow wave sleep (deep sleep) and rapid-eye movement (REM) sleep [6568]. The intrusion of EEG frequencies characteristic of wakefulness (alpha waves) in the deep non-REM sleep (delta waves) seems to be a prominent feature of the nonrestorative sleep of FM patients [656971]. Further, patients with FM often have fragmented sleep resulting from periodic intrusions such as involuntary limb movements (restless legs), sleep apnea, and arousal disturbances [687274]. Although FM patients tend to report greater disturbances in sleep duration and quality than shown in laboratory studies, and their subjective reports correlate better with the severity of clinical symptoms [75], objectively measured sleep disturbances have been associated with pain and subjective daily sleepiness in several studies [6768,7173].

3. Brain Changes That Could Underlie Symptoms

3.1. Neural Basis of Pain Amplification and Altered Pain Modulation

Functional brain imaging studies support psychophysical findings of increased pain perception in FM, in that there is an augmentation of sensory processing throughout pain-related brain regions [97681]. This is important, since laboratory findings of increased sensitivity could be interpreted as a reporting bias, rather than evidence of increased activation in pain pathways. The functional imaging studies have found that fibromyalgia patients show significantly more activity in response to pressure and thermal stimuli compared to controls in a number of brain regions. Increased activations were observed not only in limbic structures, but also in brain regions involved in sensory-discriminative processing, such as primary and secondary somatosensory cortices, which supports the view that neural responses to afferent signals are amplified in fibromyalgia.

Although the increased pain-evoked brain activations corroborate patients’ reports, the correlation between increased brain activity and increased pain perception does not explain how the afferent signal is amplified. As discussed above, there is psychophysical evidence of dysfunctions in pain modulation as well as pain perception. There is now much evidence that the activation of descending control circuitry is involved in pain modulation and that this circuitry includes parts of prefrontal, cingulate, and insular cortices [2336378283]. A number of anatomical imaging studies in FM patients reveal decreased brain gray matter in these regions [8490]. Although the cellular basis of decreased gray matter in FM patients is not known, it is possible that due to neuronal loss, decreased dendritic arborisation, or changes in glial activation, pain inhibitory systems do not work in FM patients as well as in healthy individuals.

Consistent with the idea that pain modulatory systems may be disturbed in fibromyalgia are data showing that some FM patients have abnormalities in neurochemical systems involved in pain control, including the forebrain opioid and dopamine systems. A positron emission tomography (PET) competitive binding study using the D2/D3 receptor antagonist [11C] raclopride showed that striatal dopamine is released in response to painful muscle stimulation in healthy subjects, but not in FM patients [1591], which might partially explain the increased sensitivity of FM patients to the painful muscle stimulation. For the opioid system, investigators using PET found that FM patients had decreased binding potentials at rest for the exogenously administered 𝜇-opioid receptor agonist carfentanil in several brain areas, including the ventral striatum, the anterior cingulate cortex, and the amygdala [92]. These areas are implicated in pain and its emotional modulation, and correspondingly, the binding potentials showed a negative relationship with the magnitude of affective pain scores relative to the sensory scores. Although results of this study do not tell us whether levels of endogenous opioids were increased or whether receptor availability was decreased, the findings support the notion that disturbances in the opioidergic system might be related to the increased pain sensitivity in fibromyalgia. For both dopamine and opioids, the ongoing widespread pain of FM could lead to a tonic activation within these systems and thus be a main factor in altering receptor availability and associated responsiveness to externally applied painful stimuli.

3.2. Neural Basis of Cognitive Symptoms

It is well known that cognitive capabilities such as attention and memory functions decline continuously across the adult lifespan [93], which, together with findings of accelerated age-related decline of brain gray matter observed in FM patients [84], suggests that there may be a relationship between gray matter reductions in FM and cognitive deficits in these patients. Two recent studies have linked FM to impaired emotional decision making [6263]. Anatomical imaging studies have reported that FM patients have decreased gray matter in the medial prefrontal and insular cortices [848589], areas implicated in emotional decision making [9499]. Together, these data suggest a possible association between gray matter loss and emotional decision making in FM. One study has directly examined the relationship between performance on working memory tasks and gray matter in FM patients and found that an individual’s performance was positively correlated with gray matter values in medial frontal and anterior cingulate cortices, thereby providing direct evidence for an association between altered working memory and gray matter morphology in fibromyalgia [51]. Both of these brain regions, together with lateral premotor cortex, lateral prefrontal cortex, frontal poles, and posterior parietal cortex, are areas known to be related to working memory processes [100105]. In terms of the neurochemical abnormalities in FM discussed above, dopamine plays an important role for cognitive functioning. Multiple lines of evidence demonstrate the importance of mesocortical and striatal dopaminergic pathways in memory tasks, perceptual speed, and response inhibition (see [106] for review). Thus, there is an overlap between tasks in which fibromyalgia patients perform poorly and tasks that are related to dopamine functioning, suggesting that a dysfunctional dopamine system could contribute to the cognitive symptoms of fibromyalgia.

3.3. Neural Basis of Sleep Disturbances

While many studies have used EEG and related methods to show various aspects of disordered sleep physiology in FM patients, little is known about the neurobiology underlying these disturbances. Several neurotransmitters have been proposed to influence CNS hypersensitivity associated with sleep alterations. For example, inhibition of the CNS serotonin synthesis has been linked to insomnia and increased pain sensitivity [107]. Accordingly, in FM there is evidence for low serum and cerebrospinal fluid serotonin levels [108109]. Injecting amounts of substance P into the CNS of rats has been shown to reduce sleep efficiency, increasing latency to onset to sleep and provoking awakenings from sleep [110], and there is evidence for elevated cerebrospinal fluid levels of substance P in FM patients [111,112].

3.4. What Do the Psychophysical, Cognitive, and Neuroimaging Studies Tell Us about the Neurobiology Underlying FM Symptoms?

The wealth of experimental evidence showing that FM patients are hypersensitive to painful stimuli, as well as unpleasant stimuli from other sensory modalities, in conjunction with functional brain imaging data showing increased stimulus-evoked activation throughout nociceptive pathways, shows that the defining symptom of FM—increased pain—is in fact real and not just a response bias of the patients. The finding that perception is increased in multiple modalities speaks against the hypothesis that FM pain is due to an upregulation of peripheral nociceptive processes. Further, psychophysical evidence that descending modulatory systems are altered in FM patients supports the opposing idea that FM symptoms are at least in part caused by alterations in CNS processing of the pain signal, including a dysregulation of pain modulatory systems. Nevertheless, the apparent dysregulation within these systems could be caused and/or perpetuated by a tonic activation related to the presence of ongoing widespread pain, so that the systems are saturated and cannot regulate further in response to external stimuli.

Since similar descending control systems, including attentional and emotional regulatory circuitry, affect multiple sensory modalities [113119], a dysfunction (or saturation) in these systems could lead to the hypersensitivity in multiple sensory modalities. FM patients show reduced habituation to nonpainful tactile stimuli and increased cortical response to intense auditory stimuli, both of which have been linked to deficient inhibition of incoming sensory stimuli [120121]. Also in support of the idea of a central dysregulation or saturation of pain modulation are changes in the opioid and dopamine neurotransmitter systems, both known to be involved in hedonic regulation [122].

Finally, the findings that FM patients not only perceive themselves to have altered memory and concentration (“fibrofog”), but also in fact perform poorly on multiple cognitive tests, even when depression is excluded as a contributing factor, suggest that there are alterations in brain function. The anatomical brain imaging studies that show reductions in gray matter in frontal regions important for cognitive function further indicate that this common symptom of FM is based on altered brain function. Together, the experimental evidence provides strong support for the idea that FM symptoms are related to dysfunctions in the central nervous system. The cause of these changes cannot be deduced from the available evidence, as it is correlational in nature. Did long-term ongoing pain cause the changes or did the changes cause the pain? Without a relevant animal model or long-term longitudinal studies, we cannot answer these questions. Nevertheless, we can at least say that fibromyalgia is real and that it is associated with multiple changes in the brain.

References

  1. F. Wolfe, H. A. Smythe, M. B. Yunus et al., “The American College of Rheumatology 1990. Criteria for the classification of fibromyalgia. Report of the Multicenter Criteria Committee,”Arthritis and Rheumatism, vol. 33, no. 2, pp. 160–172, 1990.
  2. F. Wolfe, D. J. Clauw, M.-A. Fitzcharles et al., “Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR preliminary diagnostic criteria for fibromyalgia,” Journal of Rheumatology, vol. 38, no. 6, pp. 1113–1122, 2011. View at Publisher ·View at Google Scholar · View at PubMed
  3. M. L. Cohen and J. L. Quintner, “Fibromyalgia syndrome, a problem of tautology,” Lancet, vol. 342, no. 8876, pp. 906–909, 1993. View at Publisher · View at Google Scholar
  4. G. Granges and G. Littlejohn, “Pressure pain threshold in pain-free subjects, in patients with chronic regional pain syndromes, and in patients with fibromyalgia syndrome,” Arthritis and Rheumatism, vol. 36, no. 5, pp. 642–646, 1993.
  5. S. Lautenbacher and J. C. Krieg, “Pain perception in psychiatric disorders: a review of the literature,” Journal of Psychiatric Research, vol. 28, no. 2, pp. 109–122, 1994. View at Publisher ·View at Google Scholar
  6. S. Lautenbacher, G. B. Rollman, and G. A. McCain, “Multi-method assessment of experimental and clinical pain in patients with fibromyalgia,” Pain, vol. 59, no. 1, pp. 45–53, 1994. View at Publisher · View at Google Scholar
  7. E. Tunks, J. Crook, G. Norman, and S. Kalaher, “Tender points in fibromyalgia,” Pain, vol. 34, no. 1, pp. 11–19, 1988.
  8. R. H. Gracely, M. A. B. Grant, and T. Giesecke, “Evoked pain measures in fibromyalgia,” Best Practice and Research, vol. 17, no. 4, pp. 593–609, 2003. View at Publisher · View at Google Scholar
  9. R. H. Gracely, F. Petzke, J. M. Wolf, and D. J. Clauw, “Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia,” Arthritis and Rheumatism, vol. 46, no. 5, pp. 1333–1343, 2002. View at Publisher · View at Google Scholar · View at PubMed
  10. B. Berglund, E. L. Harju, E. Kosek, and U. Lindblom, “Quantitative and qualitative perceptual analysis of cold dysesthesia and hyperalgesia in fibromyalgia,” Pain, vol. 96, no. 1-2, pp. 177–187, 2002. View at Publisher · View at Google Scholar
  11. J. A. Desmeules, C. Cedraschi, E. Rapiti et al., “Neurophysiologic evidence for a central sensitization in patients with fibromyalgia,” Arthritis and Rheumatism, vol. 48, no. 5, pp. 1420–1429, 2003. View at Publisher · View at Google Scholar · View at PubMed
  12. E. Kosek, J. Ekholm, and P. Hansson, “Sensory dysfunction in fibromyalgia patients with implications for pathogenic mechanisms,” Pain, vol. 68, no. 2-3, pp. 375–383, 1996. View at Publisher · View at Google Scholar
  13. S. Lautenbacher and G. B. Rollman, “Possible deficiencies of pain modulation in fibromyalgia,”Clinical Journal of Pain, vol. 13, no. 3, pp. 189–196, 1997. View at Publisher · View at Google Scholar
  14. F. Petzke, D. J. Clauw, K. Ambrose, A. Khine, and R. H. Gracely, “Increased pain sensitivity in fibromyalgia: effects of stimulus type and mode of presentation,” Pain, vol. 105, no. 3, pp. 403–413, 2003. View at Publisher · View at Google Scholar
  15. P. B. Wood, P. Schweinhardt, E. Jaeger et al., “Fibromyalgia patients show an abnormal dopamine response to pain,” European Journal of Neuroscience, vol. 25, no. 12, pp. 3576–3582, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. M. Hollins, D. Harper, S. Gallagher et al., “Perceived intensity and unpleasantness of cutaneous and auditory stimuli: an evaluation of the generalized hypervigilance hypothesis,” Pain, vol. 141, no. 3, pp. 215–221, 2009. View at Publisher · View at Google Scholar · View at PubMed
  17. G. J. G. Asmundson, J. L. Kuperos, and G. R. Norton, “Do patients with chronic pain selectively attend to pain-related information? Preliminary evidence for the mediating role of fear,” Pain, vol. 72, no. 1-2, pp. 27–32, 1997. View at Publisher · View at Google Scholar
  18. E. Keogh, D. Ellery, C. Hunt, and I. Hannent, “Selective attentional bias for pain-related stimuli amongst pain fearful individuals,” Pain, vol. 91, no. 1-2, pp. 91–100, 2001. View at Publisher ·View at Google Scholar
  19. G. Crombez, C. Eccleston, A. V. Den Broeck, L. Goubert, and B. Van Houdenhove, “Hypervigilance to pain in fibromyalgia: the mediating role of pain intensity and catastrophic thinking about pain,” Clinical Journal of Pain, vol. 20, no. 2, pp. 98–102, 2004. View at Publisher· View at Google Scholar
  20. A. J. McDermid, G. B. Rollman, and G. A. McCain, “Generalized hypervigilance in fibromyalgia: evidence of perceptual amplification,” Pain, vol. 66, no. 2-3, pp. 133–144, 1996. View at Publisher · View at Google Scholar
  21. J. L. González, F. Mercado, P. Barjola et al., “Generalized hypervigilance in fibromyalgia patients: an experimental analysis with the emotional Stroop paradigm,” Journal of Psychosomatic Research, vol. 69, no. 3, pp. 279–287, 2010. View at Publisher · View at Google Scholar · View at PubMed
  22. M. E. Geisser, J. M. Glass, L. D. Rajcevska et al., “A psychophysical study of auditory and pressure sensitivity in patients with fibromyalgia and healthy controls,” Journal of Pain, vol. 9, no. 5, pp. 417–422, 2008. View at Publisher · View at Google Scholar · View at PubMed
  23. P. Schweinhardt, K. M. Sauro, and M. C. Bushnell, “Fibromyalgia: a disorder of the brain?”Neuroscientist, vol. 14, no. 5, pp. 415–421, 2008. View at Publisher · View at Google Scholar ·View at PubMed
  24. E. J. Bartley, J. L. Rhudy, and A. E. Williams, “Experimental assessment of affective processing in fibromyalgia,” Journal of Pain, vol. 10, no. 11, pp. 1151–1160, 2009. View at Publisher · View at Google Scholar · View at PubMed
  25. A. H. Dickenson, “A cure for wind up: NMDA receptor antagonists as potential analgesics,”Trends in Pharmacological Sciences, vol. 11, no. 8, pp. 307–309, 1990. View at Publisher · View at Google Scholar
  26. C. J. Woolf and S. W. N. Thompson, “The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states,” Pain, vol. 44, no. 3, pp. 293–299, 1991. View at Publisher · View at Google Scholar
  27. R. Staud, C. J. Vierck, R. L. Cannon, A. P. Mauderli, and D. D. Price, “Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome,” Pain, vol. 91, no. 1-2, pp. 165–175, 2001. View at Publisher · View at Google Scholar
  28. R. Staud, C. J. Vierck, M. E. Robinson, and D. D. Price, “Effects of the N-methyl-D-aspartate receptor antagonist dextromethorphan on temporal summation of pain are similar in fibromyalgia patients and normal control subjects,” Journal of Pain, vol. 6, no. 5, pp. 323–332, 2005. View at Publisher · View at Google Scholar · View at PubMed
  29. D. Le Bars, A. H. Dickenson, and J. M. Besson, “Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat,” Pain, vol. 6, no. 3, pp. 283–304, 1979.View at Publisher · View at Google Scholar
  30. D. Le Bars, A. H. Dickenson, and J. M. Besson, “Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications,” Pain, vol. 6, no. 3, pp. 305–327, 1979. View at Publisher · View at Google Scholar
  31. D. Yarnitsky, L. Arendt-Nielsen, D. Bouhassira et al., “Recommendations on terminology and practice of psychophysical DNIC testing,” European Journal of Pain, vol. 14, no. 4, p. 339, 2010.View at Publisher · View at Google Scholar · View at PubMed
  32. E. Kosek and P. Hansson, “Modulatory influence on somatosensory perception from vibration and heterotopic noxious conditioning stimulation (HNCS) in fibromyalgia patients and healthy subjects,” Pain, vol. 70, no. 1, pp. 41–51, 1997. View at Publisher · View at Google Scholar
  33. N. Julien, P. Goffaux, P. Arsenault, and S. Marchand, “Widespread pain in fibromyalgia is related to a deficit of endogenous pain inhibition,” Pain, vol. 114, no. 1-2, pp. 295–302, 2005. View at Publisher · View at Google Scholar · View at PubMed
  34. E. Normand, S. Potvin, I. Gaumond, G. Cloutier, J.-F. Corbin, and S. Marchand, “Pain inhibition is deficient in chronic widespread pain but normal in major depressive disorder,” Journal of Clinical Psychiatry, vol. 72, no. 2, pp. 219–224, 2011. View at Publisher · View at Google Scholar · View at PubMed
  35. I. Tracey, A. Ploghaus, J. S. Gati et al., “Imaging attentional modulation of pain in the periaqueductal gray in humans,” Journal of Neuroscience, vol. 22, no. 7, pp. 2748–2752, 2002.
  36. K. Wiech, M. Ploner, and I. Tracey, “Neurocognitive aspects of pain perception,” Trends in Cognitive Sciences, vol. 12, no. 8, pp. 306–313, 2008. View at Publisher · View at Google Scholar· View at PubMed
  37. C. Villemure and M. C. Bushnell, “Mood influences supraspinal pain processing separately from attention,” Journal of Neuroscience, vol. 29, no. 3, pp. 705–715, 2009. View at Publisher · View at Google Scholar · View at PubMed
  38. C. Villemure and P. Schweinhardt, “Supraspinal pain processing: distinct roles of emotion and attention,” Neuroscientist, vol. 16, no. 3, pp. 276–284, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. C. Villemure, B. M. Slotnick, and M. C. Bushnell, “Effects of odors on pain perception: deciphering the roles of emotion and attention,” Pain, vol. 106, no. 1-2, pp. 101–108, 2003. View at Publisher · View at Google Scholar
  40. R. M. Bennett, J. Jones, D. C. Turk, I. J. Russell, and L. Matallana, “An internet survey of 2,596 people with fibromyalgia,” BMC Musculoskeletal Disorders, vol. 8, article 27, 2007. View at Publisher · View at Google Scholar · View at PubMed
  41. R. S. Katz, A. R. Heard, M. Mills, and F. Leavitt, “The prevalence and clinical impact of reported cognitive difficulties (Fibrofog) in patients with rheumatic disease with and without fibromyalgia,”Journal of Clinical Rheumatology, vol. 10, no. 2, pp. 53–58, 2004. View at Publisher · View at Google Scholar · View at PubMed
  42. F. Leavitt, R. S. Katz, M. Mills, and A. R. Heard, “Cognitive and dissociative manifestations in fibromyalgia,” Journal of Clinical Rheumatology, vol. 8, no. 2, pp. 77–84, 2002.
  43. J. M. Glass, D. C. Park, M. Minear, and L. J. Crofford, “Memory beliefs and function in fibromyalgia patients,” Journal of Psychosomatic Research, vol. 58, no. 3, pp. 263–269, 2005.View at Publisher · View at Google Scholar · View at PubMed
  44. N. I. Landrø, T. C. Stiles, and H. Sletvold, “Memory functioning in patients with primary fibromyalgia and major depression and healthy controls,” Journal of Psychosomatic Research, vol. 42, no. 3, pp. 297–306, 1997. View at Publisher · View at Google Scholar
  45. H. Sletvold, T. C. Stiles, and N. I. Landro, “Information processing in primary fibromyalgia, major depression and healthy controls,” Journal of Rheumatology, vol. 22, no. 1, pp. 137–142, 1995.
  46. J. A. Suhr, “Neuropsychological impairment in fibromyalgia: relation to depression, fatigue, and pain,” Journal of Psychosomatic Research, vol. 55, no. 4, pp. 321–329, 2003. View at Publisher ·View at Google Scholar
  47. K. A. Cote and H. Moldofsky, “Sleep, daytime symptoms, and cognitive performance in patients with fibromyalgia,” Journal of Rheumatology, vol. 24, no. 10, pp. 2014–2023, 1997.
  48. G. M. Grace, W. R. Nielson, M. Hopkins, and M. A. Berg, “Concentration and memory deficits in patients with Fibromyalgia Syndrome,” Journal of Clinical and Experimental Neuropsychology, vol. 21, no. 4, pp. 477–487, 1999.
  49. F. Leavitt and R. S. Katz, “Distraction as a key determinant of impaired memory in patients with fibromyalgia,” Journal of Rheumatology, vol. 33, no. 1, pp. 127–132, 2006.
  50. B. D. Dick, M. J. Verrier, K. T. Harker, and S. Rashiq, “Disruption of cognitive function in Fibromyalgia Syndrome,” Pain, vol. 139, no. 3, pp. 610–616, 2008. View at Publisher · View at Google Scholar · View at PubMed
  51. R. Luerding, T. Weigand, U. Bogdahn, and T. Schmidt-Wilcke, “Working memory performance is correlated with local brain morphology in the medial frontal and anterior cingulate cortex in fibromyalgia patients: structural correlates of pain-cognition interaction,” Brain, vol. 131, no. 12, pp. 3222–3231, 2008. View at Publisher · View at Google Scholar · View at PubMed
  52. B. Dick, C. Eccleston, and G. Crombez, “Attentional functioning in fibromyalgia, rheumatoid arthritis, and musculoskeletal pain patients,” Arthritis Care and Research, vol. 47, no. 6, pp. 639–644, 2002.
  53. F. Leavitt and R. S. Katz, “Speed of mental operations in fibromyalgia a selective naming speed deficit,” Journal of Clinical Rheumatology, vol. 14, no. 4, pp. 214–218, 2008. View at Publisher ·View at Google Scholar · View at PubMed
  54. A. Correa, E. Miró, M. P. Martínez, A. I. Sánchez, and J. Lupiáñez, “Temporal preparation and inhibitory deficit in fibromyalgia syndrome,” Brain and Cognition, vol. 75, pp. 211–216, 2011.View at Publisher · View at Google Scholar · View at PubMed
  55. E. Miro, J. Lupianez, E. Hita, M. P. Martinez, A. I. Sanchez, and G. Buela-Casal, “Attentional deficits in fibromyalgia and its relationships with pain, emotional distress and sleep dysfunction complaints,” Psychology and Health, vol. 26, no. 6, pp. 765–780, 2011.
  56. S. H. Kim, S. H. Kim, S. K. Kim, E. J. Nam, S. W. Han, and S. J. Lee, “Spatial versus verbal memory impairments in patients with fibromyalgia,” Rheumatology International. In press.
  57. D. Munguía-Izquierdo and A. Legaz-Arrese, “Assessment of the effects of aquatic therapy on global symptomatology in patients with fibromyalgia syndrome: a randomized controlled trial,”Archives of Physical Medicine and Rehabilitation, vol. 89, no. 12, pp. 2250–2257, 2008. View at Publisher · View at Google Scholar · View at PubMed
  58. D. C. Park, J. M. Glass, M. Minear, and L. J. Crofford, “Cognitive function in fibromyalgia patients,” Arthritis and Rheumatism, vol. 44, no. 9, pp. 2125–2133, 2001. View at Publisher ·View at Google Scholar
  59. F. Leavitt and R. S. Katz, “Normalizing memory recall in fibromyalgia with rehearsal: a distraction-counteracting effect,” Arthritis Care and Research, vol. 61, no. 6, pp. 740–744, 2009.View at Publisher · View at Google Scholar · View at PubMed
  60. T. Schmidt-Wilcke, P. Wood, and R. Lürding, “Cognitive impairment in patients suffering from fibromyalgia: an underestimated problem,” Schmerz, vol. 24, no. 1, pp. 46–53, 2010. View at Publisher · View at Google Scholar · View at PubMed
  61. J. M. Glass, “Review of cognitive dysfunction in fibromyalgia: a convergence on working memory and attentional control impairments,” Rheumatic Disease Clinics of North America, vol. 35, no. 2, pp. 299–311, 2009. View at Publisher · View at Google Scholar · View at PubMed
  62. A. Verdejo-García, F. López-Torrecillas, E. P. Calandre, A. Delgado-Rodríguez, and A. Bechara, “Executive function and decision-making in women with fibromyalgia,” Archives of Clinical Neuropsychology, vol. 24, no. 1, pp. 113–122, 2009. View at Publisher · View at Google Scholar ·View at PubMed
  63. C. Walteros, J. P. Sánchez-Navarro, M. A. Muñoz, J. M. Martínez-Selva, D. Chialvo, and P. Montoya, “Altered associative learning and emotional decision making in fibromyalgia,” Journal of Psychosomatic Research, vol. 70, pp. 294–301, 2011. View at Publisher · View at Google Scholar · View at PubMed
  64. A. V. Apkarian, Y. Sosa, B. R. Krauss et al., “Chronic pain patients are impaired on an emotional decision-making task,” Pain, vol. 108, no. 1, pp. 129–136, 2004. View at Publisher · View at Google Scholar · View at PubMed
  65. J. A. Horne and B. S. Shackell, “Alpha-like EEG activity in non-REM sleep and the fibromyalgia (fibrositis) syndrome,” Electroencephalography and Clinical Neurophysiology, vol. 79, no. 4, pp. 271–276, 1991.
  66. A. M. Drewes, K. D. Nielsen, S. J. Taagholt, L. Bjerregard, L. Svendsen, and J. Gade, “Sleep intensity in fibromyalgia: focus on the microstructure of the sleep process,” British Journal of Rheumatology, vol. 34, no. 7, pp. 629–635, 1995.
  67. J. W. Burns, L. J. Crofford, and R. D. Chervin, “Sleep stage dynamics in fibromyalgia patients and controls,” Sleep Medicine, vol. 9, no. 6, pp. 689–696, 2008. View at Publisher · View at Google Scholar · View at PubMed
  68. P. Sarzi-Puttini, M. Rizzi, A. Andreoli et al., “Hypersomnolence in fibromyalgia syndrome,”Clinical and Experimental Rheumatology, vol. 20, no. 1, pp. 69–72, 2002.
  69. H. Moldofsky and F. A. Lue, “The relationship of alpha and delta EEG frequencies to pain and mood in “fibrositis” patients treated with chlorpromazine and L-tryptophan,”Electroencephalography and Clinical Neurophysiology, vol. 50, no. 1-2, pp. 71–80, 1980.
  70. M. L. Perlis, D. E. Giles, R. R. Bootzin et al., “Alpha sleep and information processing, perception of sleep, pain, and arousability in fibromyalgia,” International Journal of Neuroscience, vol. 89, no. 3-4, pp. 265–280, 1997.
  71. S. Roizenblatt, H. Moldofsky, A. A. Benedito-Silva, and S. Tufik, “Alpha sleep characteristics in fibromyalgia,” Arthritis and Rheumatism, vol. 44, no. 1, pp. 222–230, 2001. View at Publisher ·View at Google Scholar
  72. P. Jennum, A. M. Drewes, A. Andreasen, and K. D. Nielsen, “Sleep and other symptoms in primary fibromyalgia and in healthy controls,” Journal of Rheumatology, vol. 20, no. 10, pp. 1756–1759, 1993.
  73. M. Rizzi, P. Sarzi-Puttini, F. Atzeni et al., “Cyclic alternating pattern: a new marker of sleep alteration in patients with fibromyalgia?” Journal of Rheumatology, vol. 31, no. 6, pp. 1193–1199, 2004.
  74. M. Viola-Saltzman, N. F. Watson, A. Bogart, J. Goldberg, and D. Buchwald, “High prevalence of restless legs syndrome among patients with fibromyalgia: a controlled cross-sectional study,”Journal of Clinical Sleep Medicine, vol. 6, no. 5, pp. 423–427, 2010.
  75. A. Okifuji and B. D. Hare, “Nightly analyses of subjective and objective (actigraphy) measures of sleep in fibromyalgia syndrome: what accounts for the discrepancy?” The Clinical Journal of Pain, vol. 27, pp. 289–296, 2010. View at Publisher · View at Google Scholar · View at PubMed
  76. D. B. Cook, G. Lange, D. S. Ciccone, W. C. Liu, J. Steffener, and B. H. Natelson, “Functional imaging of pain in patients with primary fibromyalgia,” Journal of Rheumatology, vol. 31, no. 2, pp. 364–378, 2004.
  77. M. Burgmer, E. Pogatzki-Zahn, M. Gaubitz, E. Wessoleck, G. Heuft, and B. Pfleiderer, “Altered brain activity during pain processing in fibromyalgia,” NeuroImage, vol. 44, no. 2, pp. 502–508, 2009. View at Publisher · View at Google Scholar · View at PubMed
  78. M. Diers, M. T. Schley, M. Rance et al., “Differential central pain processing following repetitive intramuscular proton/prostaglandin E2 injections in female fibromyalgia patients and healthy controls,” European Journal of Pain, vol. 15, no. 7, pp. 716–723, 2011. View at Publisher · View at Google Scholar · View at PubMed
  79. M. Diers, C. Koeppe, P. Yilmaz et al., “Pain ratings and somatosensory evoked responses to repetitive intramuscular and intracutaneous stimulation in fibromyalgia syndrome,” Journal of Clinical Neurophysiology, vol. 25, no. 3, pp. 153–160, 2008. View at Publisher · View at Google Scholar · View at PubMed
  80. J. Pujol, M. López-Solà, H. Ortiz et al., “Mapping brain response to pain in fibromyalgia patients using temporal analysis of fMRI,” PLoS ONE, vol. 4, no. 4, Article ID e5224, 2009. View at Publisher · View at Google Scholar · View at PubMed
  81. R. Staud, J. G. Craggs, W. M. Perlstein, M. E. Robinson, and D. D. Price, “Brain activity associated with slow temporal summation of C-fiber evoked pain in fibromyalgia patients and healthy controls,” European Journal of Pain, vol. 12, no. 8, pp. 1078–1089, 2008. View at Publisher · View at Google Scholar · View at PubMed
  82. P. Schweinhardt and M. C. Bushnell, “Pain imaging in health and disease—how far have we come?” Journal of Clinical Investigation, vol. 120, no. 11, pp. 3788–3797, 2010. View at Publisher· View at Google Scholar · View at PubMed
  83. T. D. Wager, J. K. Rilling, E. E. Smith et al., “Placebo-induced changes in FMRI in the anticipation and experience of pain,” Science, vol. 303, no. 5661, pp. 1162–1167, 2004. View at Publisher ·View at Google Scholar · View at PubMed
  84. A. Kuchinad, P. Schweinhardt, D. A. Seminowicz, P. B. Wood, B. A. Chizh, and M. C. Bushnell, “Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain?”Journal of Neuroscience, vol. 27, no. 15, pp. 4004–4007, 2007. View at Publisher · View at Google Scholar · View at PubMed
  85. M. Burgmer, M. Gaubitz, C. Konrad et al., “Decreased gray matter volumes in the cingulo-frontal cortex and the amygdala in patients with fibromyalgia,” Psychosomatic Medicine, vol. 71, no. 5, pp. 566–573, 2009. View at Publisher · View at Google Scholar · View at PubMed
  86. P. B. Wood, M. F. Glabus, R. Simpson, and J. C. Patterson, “Changes in gray matter density in fibromyalgia: correlation with dopamine metabolism,” Journal of Pain, vol. 10, no. 6, pp. 609–618, 2009. View at Publisher · View at Google Scholar · View at PubMed
  87. J. Lutz, L. Jäger, D. De Quervain et al., “White and gray matter abnormalities in the brain of patients with fibromyalgia: a diffusion-tensor and volumetric imaging study,” Arthritis and Rheumatism, vol. 58, no. 12, pp. 3960–3969, 2008. View at Publisher · View at Google Scholar ·View at PubMed
  88. T. Schmidt-Wilcke, R. Luerding, T. Weigand et al., “Striatal grey matter increase in patients suffering from fibromyalgia—A voxel-based morphometry study,” Pain, vol. 132, no. 1, pp. S109–S116, 2007. View at Publisher · View at Google Scholar · View at PubMed
  89. M. E. Robinson, J. G. Craggs, D. D. Price, W. M. Perlstein, and R. Staud, “Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome,” Journal of Pain, vol. 12, no. 4, pp. 436–443, 2011. View at Publisher · View at Google Scholar · View at PubMed
  90. B. K. Puri, M. Agour, K. D. R. Gunatilake, K. A. C. Fernando, A. I. Gurusinghe, and I. H. Treasaden, “Reduction in left supplementary motor area grey matter in adult female fibromyalgia sufferers with marked fatigue and without affective disorder: a pilot controlled 3-T magnetic resonance imaging voxel-based morphometry study,” Journal of International Medical Research, vol. 38, no. 4, pp. 1468–1472, 2010.
  91. D. J. Scott, M. M. Heitzeg, R. A. Koeppe, C. S. Stohler, and J. K. Zubieta, “Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity,”Journal of Neuroscience, vol. 26, no. 42, pp. 10789–10795, 2006. View at Publisher · View at Google Scholar · View at PubMed
  92. R. E. Harris, D. J. Clauw, D. J. Scott, S. A. McLean, R. H. Gracely, and J. K. Zubieta, “Decreased central mu-opioid receptor availability in fibromyalgia,” Journal of Neuroscience, vol. 27, no. 37, pp. 10000–10006, 2007. View at Publisher · View at Google Scholar · View at PubMed
  93. D. C. Park and A. H. Gutchess, “Aging, cognition, and culture: a neuroscientific perspective,”Neuroscience and Biobehavioral Reviews, vol. 26, no. 7, pp. 859–867, 2002. View at Publisher ·View at Google Scholar
  94. A. Bechara, D. Tranel, and H. Damasio, “Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions,” Brain, vol. 123, no. 11, pp. 2189–2202, 2000.
  95. L. Clark, A. Bechara, H. Damasio, M. R. F. Aitken, B. J. Sahakian, and T. W. Robbins, “Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making,” Brain, vol. 131, no. 5, pp. 1311–1322, 2008. View at Publisher · View at Google Scholar· View at PubMed
  96. G. Northoff, S. Grimm, H. Boeker et al., “Affective judgment and beneficial decision making: ventromedial prefrontal activity correlates with performance in the Iowa Gambling Task,” Human Brain Mapping, vol. 27, no. 7, pp. 572–587, 2006. View at Publisher · View at Google Scholar ·View at PubMed
  97. H. Fukui, T. Murai, H. Fukuyama, T. Hayashi, and T. Hanakawa, “Functional activity related to risk anticipation during performance of the Iowa gambling task,” NeuroImage, vol. 24, no. 1, pp. 253–259, 2005. View at Publisher · View at Google Scholar · View at PubMed
  98. R. Bar-On, D. Tranel, N. L. Denburg, and A. Bechara, “Exploring the neurological substrate of emotional and social intelligence,” Brain, vol. 126, no. 8, pp. 1790–1800, 2003. View at Publisher· View at Google Scholar · View at PubMed
  99. M. P. Paulus, C. Rogalsky, A. Simmons, J. S. Feinstein, and M. B. Stein, “Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism,” NeuroImage, vol. 19, no. 4, pp. 1439–1448, 2003. View at Publisher · View at Google Scholar
  100. A. M. Owen, K. M. McMillan, A. R. Laird, and E. Bullmore, “N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies,” Human Brain Mapping, vol. 25, no. 1, pp. 46–59, 2005. View at Publisher · View at Google Scholar · View at PubMed
  101. N. G. Müller and R. T. Knight, “The functional neuroanatomy of working memory: contributions of human brain lesion studies,” Neuroscience, vol. 139, no. 1, pp. 51–58, 2006. View at Publisher ·View at Google Scholar · View at PubMed
  102. A. S. Champod and M. Petrides, “Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring processes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 37, pp. 14837–14842, 2007. View at Publisher · View at Google Scholar · View at PubMed
  103. J. D. Ragland, B. I. Turetsky, R. C. Gur et al., “Working memory for complex figures: an fMRI comparison of letter and fractal n-back tasks,” Neuropsychology, vol. 16, no. 3, pp. 370–379, 2002. View at Publisher · View at Google Scholar
  104. D. J. Veltman, S. A. R. B. Rombouts, and R. J. Dolan, “Maintenance versus manipulation in verbal working memory revisited: an fMRI study,” NeuroImage, vol. 18, no. 2, pp. 247–256, 2003. View at Publisher · View at Google Scholar
  105. J. D. Cohen, W. M. Perlstein, T. S. Braver et al., “Temporal dynamics of brain activation during a working memory task,” Nature, vol. 386, no. 6625, pp. 604–611, 1997. View at Publisher · View at Google Scholar · View at PubMed
  106. L. Bäckman, L. Nyberg, U. Lindenberger, S. C. Li, and L. Farde, “The correlative triad among aging, dopamine, and cognition: current status and future prospects,” Neuroscience and Biobehavioral Reviews, vol. 30, no. 6, pp. 791–807, 2006. View at Publisher · View at Google Scholar · View at PubMed
  107. H. Moldofsky, “Rheumatic pain modulation syndrome: the interrelationships between sleep, central nervous system serotonin, and pain,” Advances in neurology, vol. 33, pp. 51–57, 1982.
  108. I. J. Russell, J. E. Michalek, G. A. Vipraio, E. M. Fletcher, M. A. Javors, and C. A. Bowden, “Platelet 3H-imipramine uptake receptor density and serum serotonin levels in patients with fibromyalgia/fibrositis syndrome,” Journal of Rheumatology, vol. 19, no. 1, pp. 104–109, 1992.
  109. I. J. Russell, H. Vaeroy, M. Javors, and F. Nyberg, “Cerebrospinal fluid biogenic amine metabolites in fibromyalgia/fibrositis syndrome and rheumatoid arthritis,” Arthritis and Rheumatism, vol. 35, no. 5, pp. 550–556, 1992.
  110. M. L. Andersen, D. C. Nascimento, R. B. MacHado, S. Roizenblatt, H. Moldofsky, and S. Tufik, “Sleep disturbance induced by substance P in mice,” Behavioural Brain Research, vol. 167, no. 2, pp. 212–218, 2006. View at Publisher · View at Google Scholar · View at PubMed
  111. I. J. Russell, M. D. Orr, B. Littman et al., “Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome,” Arthritis and Rheumatism, vol. 37, no. 11, pp. 1593–1601, 1994. View at Publisher · View at Google Scholar
  112. H. Vaeroy, R. Helle, O. Forre, E. Kass, and L. Terenius, “Elevated CSF levels of substance P and high incidence of Raynaud phenomenon in patients with fibromalgia: new features for diagnosis,”Pain, vol. 32, no. 1, pp. 21–26, 1988.
  113. A. R. Mayer, F. M. Hanlon, A. R. Franco et al., “The neural networks underlying auditory sensory gating,” NeuroImage, vol. 44, no. 1, pp. 182–189, 2009. View at Publisher · View at Google Scholar · View at PubMed
  114. M. I. Posner and J. Driver, “The neurobiology of selective attention,” Current Opinion in Neurobiology, vol. 2, no. 2, pp. 165–169, 1992.
  115. S. McMains and S. Kastner, “Interactions of top-down and bottom-up mechanisms in human visual cortex,” Journal of Neuroscience, vol. 31, no. 2, pp. 587–597, 2011. View at Publisher ·View at Google Scholar · View at PubMed
  116. F. Grabenhorst and E. T. Rolls, “Attentional modulation of affective versus sensory processing: functional connectivity and a top-down biased activation theory of selective attention,” Journal of Neurophysiology, vol. 104, no. 3, pp. 1649–1660, 2010. View at Publisher · View at Google Scholar · View at PubMed
  117. W. R. Staines, S. J. Graham, S. E. Black, and W. E. McIlroy, “Task-relevant modulation of contralateral and ipsilateral primary somatosensory cortex and the role of a prefrontal-cortical sensory gating system,” NeuroImage, vol. 15, no. 1, pp. 190–199, 2002. View at Publisher · View at Google Scholar · View at PubMed
  118. T. Bardouille, T. W. Picton, and B. Ross, “Attention modulates beta oscillations during prolonged tactile stimulation,” European Journal of Neuroscience, vol. 31, no. 4, pp. 761–769, 2010. View at Publisher · View at Google Scholar · View at PubMed
  119. P. Montoya and C. Sitges, “Affective modulation of somatosensory-evoked potentials elicited by tactile stimulation,” Brain Research, vol. 1068, no. 1, pp. 205–212, 2006. View at Publisher ·View at Google Scholar · View at PubMed
  120. P. Montoya, C. Sitges, M. García-Herrera et al., “Reduced brain habituation to somatosensory stimulation in patients with fibromyalgia,” Arthritis and Rheumatism, vol. 54, no. 6, pp. 1995–2003, 2006. View at Publisher · View at Google Scholar · View at PubMed
  121. M. T. Carrillo-de-la-Peña, M. Vallet, M. I. Pérez, and C. Gómez-Perretta, “Intensity dependence of auditory-evoked cortical potentials in fibromyalgia patients: a test of the generalized hypervigilance hypothesis,” Journal of Pain, vol. 7, no. 7, pp. 480–487, 2006. View at Publisher ·View at Google Scholar · View at PubMed
  122. G. F. Koob, “Neural mechanisms of drug reinforcement,” Annals of the New York Academy of Sciences, vol. 654, pp. 171–191, 1992.

Day Fortyfive:

An illusive day production!

Warning you may find this post offensive, sorry in advance.

Today was FUBAR pure and simple.

I post this a few days after the fact as I spent some of the following days in the short stay mental ward at our local hospital, yes they released me as sane and simply blamed the extreme stress I am under, apparently this type of behaviour under extreme stress conditions is understandable, but defiantly not acceptable and deeply troubles me.

I have no idea how it happened, all I remember was hearing arguing from the kids and the phone ringing again, ring ring ring ring, please stop, please stop!

It could not have been much before 8am I was so tired from lack of sleep, I was awoken pretty much every night and morning by something, in fact every time I had slept for a couple of weeks or so, I still even today can’t remember having a full nights sleep.

I jumped up from sleep in a trance like state of tiresome anguish to an empty bedroom and immediately began to rip apart the furniture.

As I began to smash it viciously and ferociously into my body I repeatedly pounded my face into the headboard, the pain enhanced my strength as I pummelled my self some more till the wood splintered and broke, bruising my head and cutting it.

I remember pulling a wardrobe on me, the clothes sprung out and spread out around the room then floated down atop of me, as I collapsed downwards the floor was the only thing feeling pity for my soul.

Weakened by my outrageous ordeal I lay among the clothes pile whimpering in docile torment.

The kids and Shell only heard my tantrum and luckily did not witness it, this is not normal behaviour for me at all and after they left for school and I heard the front door slam there was a moment of silence that lasted some time, everything suddenly became clear I wiped the snot from my face that had dribbled on my hands and dressing gown and began to come to my senses.

As I looked around the room there was not really any damage, just a fucking mess to clean up later, I beat my hands on my head repeatedly in frustration, not only at the mess I had caused but the massive amount of stress I had inflicted on my family and half the street for that matter, and it still wasn’t even 08:30 yet.

In a heightened state of alertness I headed towards the bathroom, clutching my bleeding head in one hand and steadying myself with the other, I then sat on the toilet, lid down and cried.

It is hard to explain the thought process I had next as I seem to have been crying one minute and the next I had a razor blade in my hands and had cut both of my legs randomly in multiple directions, as I revived myself from a some kind of comatose state I noticed the blade had skin hanging from it and that blood had dripped down my leg to a small pool on the floor.

My legs stung like nothing I had felt before, my mind felt so very calm, like a feather floating in space, drifting meaninglessly into the void.

Most of the day I spent in a quantum silence licking my wounds in a corner like a cowering animal quivering in pity and shame.

Please forgive me for I have sinned!

Loving Kindness, Stu.

Blood Lust a poem that attempts to describe how I felt.

Day Thirtyeight:

The day of Serendipity

serendipity |ˌserənˈdipitē | noun

The occurrence and development of events by chance in a happy or beneficial way:
A fortunate stroke of serendipity | a series of small serendipities.

Today as a fellow blogger puts it is a Pajama day I am absolutely knackerd from the walking I have done this week every muscle in my body exudes pain.

I am not getting dressed today and am going to spend the day chill axing and enjoying music, although I am in  an immense amount of pain I feel calm and still, Shell gave me a back rub earlier and took a lot of the stress and tension from me, I really need her to show me that she loves me now, the images in my mind are withering my soul.

Having a baby should be the happiest time of our lives and I am trying so hard to make it that way, I wish whole heartedly that the baby is mine and although I know the chances are very high that it is, the doubt in my mind is tormenting me and making it very hard to let go off all the pain.

Shell has just washed up and gone to pick up our son from school life goes on.

No turbo or exercise today but I have managed to do my emotions training it does help a lot and I am learning to control my brain, not it control me.

Shell and I had a big argument last night and said a lot of things to each other we really shouldn’t have, I am not going to go into it because it all started form nothing and neither of us where to blame, sometimes shit just happens.

Today we are both much calmer and have got a lot of held back feelings out in the open the truth hurts but once it is out you can heal.

It is a shame that some people still want to see hatred, that is up to them, but I am trying to not only lick my wounds but remember why they are there in the first place, if karma exists I must have acted extremely harshly previously in my life, there is no way out of that.

I do hope the other family involved are doing okay and are coping since they removed me from Facebook I have not been able to read their status updates, perhaps this is a good thing as it hurts to think of anything to do with my situation.

I have spent a lot of hours looking into Sensory Acuity and have been doing exercises to prepare myself for the NLP course in May, keeping focus on this and the baby is what is keeping me strong, we are looking into a private scan to get the conception dates as this will really help all parties involved and allow us to start planning and enjoying our baby.

16:40

We did end up making our turbo’s yippee, and after we had some ryvita and Philadelphia cheese with salad, we both helped each other make and clean everything.

18:35

Shell is now asleep on the sofa, she cleaned the kitchen, I got dressed and we made turbo’s together, my son always wants some, want your kids to eat spinach and celery? drink turbo’s and they will love it.

Before she fell asleep I put on the new David Gilmour album On an Island and gently caressed and kissed her belly, these are the magical moments that will keep us strong, as we clutched each others hands we just closed our eyes and reminisced in the moment.

It is times like this that make both of us know that we can get through this and we are strong enough to fight the demons and follow the path of the light.

19:48

Shell has been a sleep a while now and the house has got dark I have just noticed the time and cooked up some dinner for the kids, only beans and toast as it was late and they had ice cream and bananas for dessert.

Everyones settled down now to a movie on Netflix.

So it’s 00:42 tomorrow if you will, I have spent about an hour or so crying and dribbling on my self the day went great today and almost nothing went wrong, after Shell had a bath I got highly emotional and just burst into tears and stayed that way for about three hours, as I quietly sat on my own in the dark until now feeling sorry for myself.

Loving Kindness, Stu.

Day Thirtysix:

I didn’t wake up today until about twelve o’clock, just couldn’t sleep last night at all, I got up and spent some time working on the proposal for the venus project, did about an hours meditation, and went to sleep listening to Paul McKenna‘s “Master Your Emotions“.

I awoke feeling rather happy and joyful today, the first thing I remember seeing was Shell’s smiling face, I kissed her and told her I loved her, we hugged a while and went down stairs.

It took me a good hour to get my act together today, the mornings take a good bit of positive mental attitude to push your self past the fatigue and pain but it’s easier for me than taking the Tramodol and becoming a Zombie for the day, how does that help my muscles get stronger?

I am still in an immense amount of pain in my back and shoulders the tingling worsens at night, it might be the case that this could be a normal effect of Fibromyalgia, a fellow Blogger reports similar feelings whilst laying on her back to.

I must confess that I feel great compared to how I was just a month ago the juice is really giving me the energy I need and the super foods are making a massive difference to my well-being and body mind.

I would not recommend stopping medications the way I did to anyone it is dangerous and could cause you some serious harm, but I am now 36 days in and it was worth it for me personally.

I can eat foods without stomach pains, I can use the bathroom regularly and have so much motivation, enthusiasm and energy since stopping pharmaceuticals.

The sun is shining and I feel great after making some turbos, albeit without the avocado as the ones I had went bad =/

Shell has gone to get the kids from school, she seems much happier today I am trying so hard to help out around the house and do as much as possible to comfort her.

I have just looked at the Hotel that the NLP scholarship is held in, wow!
It is lovely, may as well make a night of it, so I have enquired about staying there a few nights =)

Hasta mañana.

Day Twentynine:

Whilst you read this post perhaps a listen to this may sooth your mind, just as it has mine.

Started the day badly today, no idea what happened to all my positivity listened to The Eagles Lyin” Eyes and Volbeat Still Counting, maybe not such a good idea but I needed to feel this and let it go, last night whilst setting the alarm, I found a pair or Shell’s black underwear sitting there under the stairs, they just happened to be the culprits of her lust and I freaked out.

I never shouted or got angry just went inside myself and was all quiet, I have not spoken to Shell much today, I am having trouble making love to her, I feel used abused and dirty, like a broken second hand gift, hopefully someone will come and buy me for a few pennies, dust me off, take me home and treasure me, kissing her is not the same anymore, even prostitutes don’t kiss their clients but she kissed another man without any thought, her lips just do not feel the same.

I still have troubles looking into her eyes she lied to my face and I believed her full heartedly.
How can I forgive?  Even looking into her eyes makes me cry, resentment and fear all held in a broken heart.

Trying to forgive and forget is harder than I thought it would be, the turmoil in my mind is like a tormenting tornado, I am inside it spinning around and around I can see the way out but the spinning is stopping me from escaping, I am torn, ripped, my skin bleeds pain from its pores, my eyes bleed tears of blood.

The pain in my body consumes me, I’m lethargic, my mind is numb, when I smile I feel like it will crack and my skin will simply peel off, Shell has no idea how much she has hurt me and I do not think she ever will.

I forgive but forgetting is something that will take time.
I am hurting so much today both psychically and emotionally, Darren clearly didn’t give a fuck about me, he was jealous envious and wanted nothing from me except to destroy me, Shell fell into his trap as she is a whore, a sex addict whom only cares for her own selfish pleasure and lust how do I deal with that?

Clearly today I am deeply depressed considering the amount of happiness I have bought myself I guess I am allowed a sad day now and again, I am trying to get this out of my head so it does not anger me, I do not want to loose control, loose my sanity, loose my self.

Thanks for reading my rants over the last few weeks today I am feeling hurt isolated and all alone.

It’s 11:20 listening to Birdy and Shell has just made me a Turbo, after drinking it I feel better, the juice does not just help your internal digestives, but also helps the mind to be clear, missed out on it yesterday and I think I need to make sure I drink one everyday.

Nan has just arrived to take us all to the opticians we are supposed to be going out for coffee after and visiting the Apple store, but instead I am sulking and ruining it all for everyone, maybe I do not deserve to be happy!

Anyway they have all left without me, I sit alone. listen to sad music and type.

Shell has not read this post yet and I know it will upset her to read it, I do not want to hurt her feelings, make her feel sad or hurt her in anyway at all, I am full of selfish hatred that I am trying so hard to soften, so hard to let it go.

All I want is for someone to love me, hold me, feel me, genuinely care, and to know that when I look into their eyes they will never hurt me.

I love you Shell.

More than the stars in the sky.
More than the molecules in universe.
More than life itself.

It hurts so much to love you, it hurts so much to care.
But as long as I can feel you, I know you’ll always be there.

Sorry for my depressing post today but know this, sharing all of this with y’all has lifted a huge weight from my shoulders and by reading this your helping me heal by sharing your loving kindness and caring with me.

Thank you for caring I can feel all of you and will always have a hug in my heart for all that need it, my shoulder is always there for those who need it to cry on.

I am now going to listen to some Malcolm Huxter to heal my emotions.

Broken Shell

A Broken Shell

13:56 Shell arrived home about an hour ago, came right over to me and hugged me so tight, I really felt her and although the moment was short lived, it really felt special, she turned my face away from the computer and told me she had read my blog and was sorry for making me feel this way, we held each other for what seemed like an eternity but was really just a few minutes.

She went into the kitchen and made me a Turbo a while after drinking it I felt much better within, I know I have had an emo day today it is part of the healing process.

I had forgotten we had left over Chinese and soon had eaten quite a lot.

I know I have hurt you with what i have typed today, that was not my intention my love, but I am pleased that I did write this all down as it has eased my pain tremendously.

We try to carry on the rest of our day, now that I remember what its like to smile at someone whom loves you.

17:00 Shell went to the shops to buy a huge bag of feel good chemicals disguised as food.
I jumped right into the Strawberry Shortcake Häagen Dazs yum!

Although this stuff is bad for you it makes you feel better and as I am still anorexic, I need to eat as much as possible.

After a few spoons of Ice Cream I was done for now, I then hit some chocolate eclairs, argh, slurp, chocolate! nom… nom… nom…

Chocolate is an amazing healing device if you don’t eat too much, Greedy!

Loving Kindness, may all your hearts be filled with genuine compassion and joy, Namaste.

Psychological distress theories

Patrick Carnes (2001, p. 40) argues that when children are growing up, they develop “core beliefs” through the way that their family functions and treats them. A child brought up in a family that takes proper care of them has good chances of growing up well, having faith in other people, and having self worth. On the other hand, a child who grows up in a family that neglects them will develop unhealthy and negative core beliefs. They grow up to believe that people in the world do not care about them. Later in life, the person has trouble keeping stable relationships and feels isolated. Generally, addicts do not perceive themselves as worthwhile human beings (Carnes, Delmonico and Griffin, 2001, p. 40). They cope with these feelings of isolation and weakness by engaging in excessive sex (Poudat, 2005, p. 121).

According to Patrick Carnes the cycle begins with the “Core Beliefs” that sex addicts hold:[30]

  1. “I am basically a bad, unworthy person.”
  2. “No one would love me as I am.”
  3. “My needs are never going to be met if I have to depend on others.”
  4. “Sex is my most important need.”

These beliefs drive the addiction on its progressive and destructive course:[30]

  • Pain agent — First a pain agent is triggered / emotional discomfort (e.g. shame, anger, unresolved conflict). A sex addict is not able to take care of the pain agent in a healthy way.
  • Dissociation — Prior to acting out sexually, the sex addict goes through a period of mental preoccupation or obsession. Sex addict begins to dissociate (moves away from his or her feelings). A separation begins to take place between his or her mind and his or her emotional self.
  • Altered state of consciousness / a trance state / bubble of euphoric fantasized experience — Sex addict is emotionally disconnected and is pre-occupied with acting out behaviours. The reality becomes blocked out/distorted.
  • Preoccupation or “sexual pressure” — This involves obsessing about being sexual or romantic. Fantasy is an obsession that serves in some way to avoid life. The addict’s thoughts focus on reaching a mood-altering high without actually acting-out sexually. They think about sex to produce a trance-like state of arousal to eliminate the pain of reality. Thinking about sex and planning out how to reach orgasm can continue for minutes or hours before they move to the next stage of the cycle.
  • Ritualization or “acting out.” — These obsessions are intensified by ritualization or acting out. Ritualization helps distance reality from sexual obsession. Rituals induce trance and further separate the addict from reality. Once the addict begins the ritual, the chances of stopping that cycle diminish greatly. They give into the pull of the compelling sex act.
  • Sexual compulsivity — The next phase of the cycle is sexual compulsivity or “sex act”. The tensions the addict feels are reduced by acting on their sexual feelings. They feel better for the moment, thanks to the release that occurs. Compulsivity simply means that addicts regularly get to the point where sex becomes inevitable, no matter what the circumstances or the consequences. The compulsive act, which normally ends in orgasm, is perhaps the starkest reminder of the degradation involved in the addiction as the person realizes they are a slave to the addiction.
  • Despair — Almost immediately reality sets in, and the addict begins to feel ashamed. This point of the cycle is a painful place where the Addict has been many, many times. The last time the Addict was at this low point, they probably promised to never do it again. Yet once again, they act out and that leads to despair. They may feel they have betrayed spiritual beliefs, possibly a partner, and his or her own sense of integrity. At a superficial level, the addict hopes that this is the last battle.

According to Carnes, for many addicts, this dark emotion brings on depression and feelings of hopelessness. One easy way to cure feelings of despair is to start obsessing all over again. The cycle then perpetuates itself.[31]

Dr. Carnes mentions that:

Al Cooper (one of the original researchers in internet sex) described internet sex as the ‘crack cocaine’ of sexual addiction because it is an accelerant for adults of all stages of the lifespan. He felt that people would never have the problem if it had not been for the internet.

The myth of the eight-hour sleep

By Stephanie Hegarty of BBC World Service

Woman awake

We often worry about lying awake in the middle of the night – but it could be good for you. A growing body of evidence from both science and history suggests that the eight-hour sleep may be unnatural.

In the early 1990s, psychiatrist Thomas Wehr conducted an experiment in which a group of people were plunged into darkness for 14 hours every day for a month.

It took some time for their sleep to regulate but by the fourth week the subjects had settled into a very distinct sleeping pattern. They slept first for four hours, then woke for one or two hours before falling into a second four-hour sleep.

Though sleep scientists were impressed by the study, among the general public the idea that we must sleep for eight consecutive hours persists.

In 2001, historian Roger Ekirch of Virginia Tech published a seminal paper, drawn from 16 years of research, revealing a wealth of historical evidence that humans used to sleep in two distinct chunks.

His book At Day’s Close: Night in Times Past, published four years later, unearths more than 500 references to a segmented sleeping pattern – in diaries, court records, medical books and literature, from Homer’s Odyssey to an anthropological account of modern tribes in Nigeria.

A woman tending to her husband in the middle of the night by Jan Saenredam, 1595
Roger Ekirch says this 1595 engraving by Jan Saenredam is evidence of activity at night

Much like the experience of Wehr’s subjects, these references describe a first sleep which began about two hours after dusk, followed by waking period of one or two hours and then a second sleep.

“It’s not just the number of references – it is the way they refer to it, as if it was common knowledge,” Ekirch says.

During this waking period people were quite active. They often got up, went to the toilet or smoked tobacco and some even visited neighbours. Most people stayed in bed, read, wrote and often prayed. Countless prayer manuals from the late 15th Century offered special prayers for the hours in between sleeps.

And these hours weren’t entirely solitary – people often chatted to bed-fellows or had sex.

A doctor’s manual from 16th Century France even advised couples that the best time to conceive was not at the end of a long day’s labour but “after the first sleep”, when “they have more enjoyment” and “do it better”.

Ekirch found that references to the first and second sleep started to disappear during the late 17th Century. This started among the urban upper classes in northern Europe and over the course of the next 200 years filtered down to the rest of Western society.

By the 1920s the idea of a first and second sleep had receded entirely from our social consciousness.

When segmented sleep was the norm

  • “He knew this, even in the horror with which he started from his first sleep, and threw up the window to dispel it by the presence of some object, beyond the room, which had not been, as it were, the witness of his dream.” Charles Dickens, Barnaby Rudge (1840)
  • Don Quixote followed nature, and being satisfied with his first sleep, did not solicit more. As for Sancho, he never wanted a second, for the first lasted him from night to morning.” Miguel Cervantes, Don Quixote (1615)
  • “And at the wakening of your first sleepe You shall have a hott drinke made, And at the wakening of your next sleepe Your sorrowes will have a slake.” Early English ballad, Old Robin of Portingale
  • The Tiv tribe in Nigeria employ the terms “first sleep” and “second sleep” to refer to specific periods of the night

Source: Roger Ekirch

He attributes the initial shift to improvements in street lighting, domestic lighting and a surge in coffee houses – which were sometimes open all night. As the night became a place for legitimate activity and as that activity increased, the length of time people could dedicate to rest dwindled.

In his new book, Evening’s Empire, historianCraig Koslofsky puts forward an account of how this happened.

“Associations with night before the 17th Century were not good,” he says. The night was a place populated by people of disrepute – criminals, prostitutes and drunks.

“Even the wealthy, who could afford candlelight, had better things to spend their money on. There was no prestige or social value associated with staying up all night.”

That changed in the wake of the Reformation and the counter-Reformation. Protestants and Catholics became accustomed to holding secret services at night, during periods of persecution. If earlier the night had belonged to reprobates, now respectable people became accustomed to exploiting the hours of darkness.

This trend migrated to the social sphere too, but only for those who could afford to live by candlelight. With the advent of street lighting, however, socialising at night began to filter down through the classes.

In 1667, Paris became the first city in the world to light its streets, using wax candles in glass lamps. It was followed by Lille in the same year and Amsterdam two years later, where a much more efficient oil-powered lamp was developed.

London didn’t join their ranks until 1684 but by the end of the century, more than 50 of Europe’s major towns and cities were lit at night.

Night became fashionable and spending hours lying in bed was considered a waste of time.

Street-lighting in Leipzig in 1702
A small city like Leipzig in central Germany employed 100 men to tend to 700 lamps

“People were becoming increasingly time-conscious and sensitive to efficiency, certainly before the 19th Century,” says Roger Ekirch. “But the industrial revolution intensified that attitude by leaps and bounds.”

Strong evidence of this shifting attitude is contained in a medical journal from 1829 which urged parents to force their children out of a pattern of first and second sleep.

“If no disease or accident there intervene, they will need no further repose than that obtained in their first sleep, which custom will have caused to terminate by itself just at the usual hour.

“And then, if they turn upon their ear to take a second nap, they will be taught to look upon it as an intemperance not at all redounding to their credit.”

Today, most people seem to have adapted quite well to the eight-hour sleep, but Ekirch believes many sleeping problems may have roots in the human body’s natural preference for segmented sleep as well as the ubiquity of artificial light.

This could be the root of a condition called sleep maintenance insomnia, where people wake during the night and have trouble getting back to sleep, he suggests.

The condition first appears in literature at the end of the 19th Century, at the same time as accounts of segmented sleep disappear.

“For most of evolution we slept a certain way,” says sleep psychologist Gregg Jacobs. “Waking up during the night is part of normal human physiology.”

The idea that we must sleep in a consolidated block could be damaging, he says, if it makes people who wake up at night anxious, as this anxiety can itself prohibit sleeps and is likely to seep into waking life too.

Continue reading the main story

Stages of sleep

Every 60-100 minutes we go through a cycle of four stages of sleep

  • Stage 1 is a drowsy, relaxed state between being awake and sleeping – breathing slows, muscles relax, heart rate drops
  • Stage 2 is slightly deeper sleep – you may feel awake and this means that, on many nights, you may be asleep and not know it
  • Stage 3 and Stage 4, or Deep Sleep – it is very hard to wake up from Deep Sleep because this is when there is the lowest amount of activity in your body
  • After Deep Sleep, we go back to Stage 2 for a few minutes, and then enter Dream Sleep – also called REM (rapid eye movement) sleep – which, as its name suggests, is when you dream

In a full sleep cycle, a person goes through all the stages of sleep from one to four, then back down through stages three and two, before entering dream sleep

Source: Gregg Jacobs

Russell Foster, a professor of circadian [body clock] neuroscience at Oxford, shares this point of view.

“Many people wake up at night and panic,” he says. “I tell them that what they are experiencing is a throwback to the bi-modal sleep pattern.”

But the majority of doctors still fail to acknowledge that a consolidated eight-hour sleep may be unnatural.

“Over 30% of the medical problems that doctors are faced with stem directly or indirectly from sleep. But sleep has been ignored in medical training and there are very few centres where sleep is studied,” he says.

Jacobs suggests that the waking period between sleeps, when people were forced into periods of rest and relaxation, could have played an important part in the human capacity to regulate stress naturally.

In many historic accounts, Ekirch found that people used the time to meditate on their dreams.

“Today we spend less time doing those things,” says Dr Jacobs. “It’s not a coincidence that, in modern life, the number of people who report anxiety, stress, depression, alcoholism and drug abuse has gone up.”

So the next time you wake up in the middle of the night, think of your pre-industrial ancestors and relax. Lying awake could be good for you.